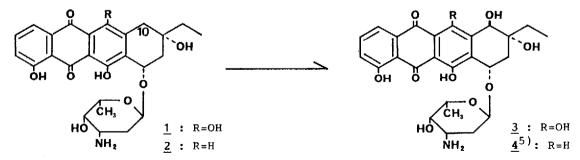
0040-4039/89 \$3.00 + .00 Pergamon Press plc


A NOVEL METHOD FOR REGIO- AND STEREOSELECTIVE HYDROXYLATION OF ANTHRACYCLINE GLYCOSIDES

Shohachi Nakajima, Hiroyuki Kawai, Masayuki Sakakibara*
Pharmaceutical Laboratory, Kirin Brewery Co., Ltd.
1-2-2, Soujamachi, Maebashi, Gunma, 371, Japan
Kuniaki Tatsuta
Department of Applied Chemistry, Keio University
Hiyoshi, Yokohama, Kanagawa, 223, Japan
Noboru Otake
Department of Biosciences, Teikyo University

1189, Nishikitayama, Nagaoka-cho, Utsunomiya, Tochigi, 320, Japan

Summary: Hydroxylation at C-10 position of anthracycline glycoside proceeds stereoselectively with trimethylamine-N-oxide in DMF.

The efficient introduction of the hydroxyl group at the C-10 position of anthracyclines is one of main problems for their total synthesis or for their chemical modification¹⁾. Known hydroxylation methods¹⁾ require multisteps and could not be applied to anthracycline glycosides because of their unstable glycoside linkage. We have recently reported that the reaction of 13-deoxocarminomycin <u>1</u> with bis(2-iodoethyl)ether and triethylamine in DMF gave a 10-hydroxylated by-product²⁾. This fact prompted us to develop the direct hydroxylation of anthracycline glycosides. After many attempts, a satisfactory method for our preparative or industrial purpose was found out. We here report a novel and concise method for regio- and stereoselective hydroxylation at the C-10 position of anthracycline glycosides.

The compound <u>1</u> was converted to 13-deoxo-10-hydroxycarminomycin (oxaunomycin)³) <u>3</u> stereoselectively with trimethylamine-N-oxide (TNO) under a mild condition in good yield. A ratio (>100:1) of <u>3</u> and its 10-epi-isomer⁴)

(n - 1 - 1 -	** 3	

Substrate	Reagent	Eq	Solvent	Product	% Yield
1	TNO	2	DMF	3	82
<u>1</u>	TNO	2	acetone	<u>3</u>	53
1	TNO	2	CH ₃ CN	<u>3</u>	42
1	TNO	2	CH2C12	no reaction	
<u>1</u>	NMO	- 2	DMF	<u>3</u>	31
<u>1</u>	PO	2	DMF	no reaction	
<u>1</u>	Et ₃ N	38	DMF	<u>3</u>	56
2	TNO	2	DMF	4	34
2	Et ₃ N	38	DMF	4	14

Table. Hydroxylation at C-10 position of anthracycline glycosides (room temperature, 40 hr.)

PO : Pyridine-N-oxide.

was determined by HPLC analysis²⁾. As summarized in Table, this reaction proceeded also with N-methylmorpholine-N-oxide (NMO) as well as with a large excess of triethylamine. The existence of a trace amount of triethylamine-Noxide in triethylamine is suspected in the latter case. The best result was obtained when DMF was used as a solvent.

A typical procedure for 3 is as follows.

To a solution of 1 (40.0mg) in DMF (12ml) was added trimethylamine-N $oxide \cdot 2H_2O$ (16.8mg). The mixture was stirred at room temperature for 40 hr and then evaporated. The product was purified with preparative TLC. Crystallization from MeOH-diethyl ether gave 2 (34.0mg, 82% yield) as a red powder.

Further studies on the mechanism, scope, and limitation of this reaction is in progress and will be reported in our subsequent paper.

References

- A. S. Kende, Yuh-Geng, Tsay, J. Chem. Soc. Chem. Comm., 140 (1977); H. Tanaka, T. Yoshioka, Y. Shimauchi, A. Yoshimoto, T. Ishikura, H. Naganawa, T. Takeuchi, H. Umezawa, <u>Tetrahedron Lett.</u>, <u>25</u>, 3355 (1984); "Recent Aspect of Anthracyclinone Chemistry" ed. by T. R. Kelly, <u>Tetrahedron</u>, <u>40</u>, 4537 (1984).
- 2) H. Umezawa, S. Nakajima, H. Kawai, N. Komeshima, H. Yoshimoto, T. Urata, A. Odagawa, N. Otsuki, K. Tatsuta, N. Ötake, T. Takeuchi, J. Antibiot., 40, 1058 (1987).
- 3) A. Yoshimoto, S. Fujii, O. Johdo, K. Kubo, T. Ishikura, H. Naganawa, T. Sawa, T. Takeuchi, H. Umezawa, <u>J. Antibiot.</u>, <u>39</u>, 902, (1986).
 4) K. Imamura, <u>Ph. D thesis, Tokyo University</u>, 28, (1986).
 5) N. Otake, K. Tatsuta, Y. Hayakawa, N. Otsuki, <u>Japanese</u> <u>Patent</u>, <u>JP81398</u>, (1987).
- (1987).

(Received in Japan 12 June 1989)